If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2+6p-91=0
a = 1; b = 6; c = -91;
Δ = b2-4ac
Δ = 62-4·1·(-91)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-20}{2*1}=\frac{-26}{2} =-13 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+20}{2*1}=\frac{14}{2} =7 $
| 2496=5p-4 | | 9=6+4x-1 | | 2x+4=8(2x+4) | | 2=4−2t | | 3=3g−6 | | 2w-16=2 | | 40/35=x/100 | | 6b+-5b+-13=5 | | 18t-15t-2t=14 | | 14p+4p-12p+p-5p=18 | | 8z+2z-4z-4z=20 | | 5w-13=77 | | 2(c+1)=1`0 | | -4u+2u-1=11 | | 4m-7m=-12 | | 2x+3=−3x+13 | | 17k-16k-k+2k-k=11 | | z+z-6z-(11)=-17 | | z-14z+12z+4z=-15 | | 11a-12a=-3 | | y/4=9-1/4 | | x+5x=750 | | c=180-39-27 | | -7c+-6c-(-12c)=20 | | 12m+-9m=18 | | 7+z=15 | | 8k+6k=-15 | | 9h-10h-(-5h)+-9h+-11=9 | | 7c-7c+2c+3c-2c=12 | | 18w+4w+3w+w-19w-4=17 | | 6u=20+u | | 13j-6j-j+3j+1=10 |